Effects of oxidation on the nanoscale mechanisms of crack formation in aluminum.
نویسندگان
چکیده
Materials failure, in the form of cracking, is a phenomenon of fundamental scientific interest and one that impacts a variety of applications spanning a wide range of fields, particularly those of materials science and engineering. Experiments have investigated extensively the macroscopic properties associated with cracking within homogeneous materials as well as at interfaces between dissimilar materials. Likewise, theoretical modeling via engineering finite-element approaches and molecular dynamics simulations with empirical embedded-atom potentials 3] have provided some insight into cracking mechanisms. Nevertheless, these models rely on inherent assumptions concerning interatomic and/or bulk behavior, a drawback in instances where fundamental atomic interactions are poorly understood or improperly characterized by overly simplified model potentials. A comprehensive study incorporating a first principles approach at the atomic scale and effectively linking this information to the macroscopic scale poses an array of challenges, implementational and otherwise. To date, these difficulties and the computational expense associated with first principles calculations have generally motivated employing empirical assumptions to treat mechanics of the smallest length-scale regime. Resorting to empirical models limits the chemistry that may be accounted for. Accordingly, despite widespread scientific interest in the cracking phenomenon, aspects of the microscopic failure mechanisms remain largely a mystery. Herein, we investigate some aspects of the atomic-level properties which lead to chemically induced crack formation within a simple model. Finding methods to smoothly and effectively couple microscopic to macroscopic modeling is an active area of research 5] and will provide much-needed insight into a complete mechanism for chemically induced cracking. Aluminum is an important engineering material used in a variety of applications; to understand its behavior under stress is essential. Under ambient conditions, a self-limiting oxide layer forms on the aluminum surface and protects the underlying metal from further oxidation. This, in addition to their light [12] J. Hofkens, M. Maus, T. Gensch, T. Vosch, M. Cotlet, F. Köhn, A. Herrmann, K. Müllen, F. C. De Schryver, J. Am. Chem. Soc. 2000, 122, 9278. [13] J. Hofkens, L. Latterini, G. De Belder, T. Gensch, M. Maus, T. Vosch, Y. Karni, G. Schweitzer, F. C. De Schryver, A. Herrmann, K. Mullen, Chem. Phys. Lett. 1999, 304, 1. [14] Y. Karni, S. Jordens, G. De Belder, G. Schweitzer, J. Hofkens, T. Gensch, M. Maus, F. C. De Schryver, A. Herrmann, K. Mullen, Chem. Phys. Lett. 1999, 310, 73. [15] Y. Karni, S. Jordens, G. De Belder, J. Hofkens, G. Schweitzer, F. C. De Schryver, J. Phys. Chem. B 1999, 103, 9378. [16] T. Weil, U. M. Wiesler, A. Herrmann, K. Mullen, J. Am. Chem. Soc. 2000, submitted. [17] F. Morgenroth, E. Reuther, K. Mullen, Angew. Chem. 1997, 109, 647; Angew. Chem. Int. Ed. Engl. 1997, 36, 631. [18] F. Morgenroth, K. Mullen, Tetrahedron 1997, 53, 15 349. [19] F. Morgenroth, C. Kubel, M. Muller, U. M. Wiesler, A. J. Berresheim, M. Wagner, K. Mullen, Carbon 1998, 36, 833. [20] V. Gulbinas, L. Valkunas, D. Kuciauskas, E. Katilius, V. Liuolia, W. L. Zhou, R. E. Blankenship, J. Phys. Chem. 1996, 100, 17 950. [21] L. Valkunas, V. Gulbinas, Photochem. Photobiol. 1997, 66, 628. [22] V. Barzda, G. Garab, V. Gulbinas, L. Valkunas, Biochim. Biophys. Acta Bioenerg. 1996, 1273, 231. [23] W. H. J. Westerhuis, M. Vos, R. van Grondelle, J. Amesz, R. A. Niederman, Biochim. Biophys. Acta Bioenerg. 1998, 1366, 317. [24] A. Ruseckas, M. Theander, L. Valkunas, M. R. Andersson, O. Inganas, V. Sundstrom, J. Lumin. 1998, 76 ± 77, 474. [25] V. Sundstrom, T. Gillbro, R. A. Gadonas, A. Piskarskas, J. Phys. Chem. 1988, 89, 2754. [26] I. G. Scheblykin, O. P. Varnavsky, M. M. Bataiev, O. Sliusarenko, M. Van der Auweraer, A. G. Vitukhnovsky, Chem. Phys. Lett. 1998, 298, 341. [27] M. Maus, S. Mitra, M. Lor, T. Weil, J. Hofkens, K. Mullen, F. C. De Schryver, submitted. [28] D. J. Nesbitt, R. W. Field, J. Phys. Chem. 1996, 100, 12 735. [29] J. S. Baskin, L. Banares, S. Pedersen, A. H. Zewail, J. Phys. Chem. 1996, 100, 11 920. [30] T. Nakabayashi, H. Okamoto, M. Tasumi, J. Phys. Chem. A 1997, 101, 3494. [31] I. V. Rubtsov, K. Yoshihara, J. Phys. Chem. A 1999, 103, 10 202. [32] H. Zhang, A. M. Jonkman, P. van der Meulen, M. Glasbeek, Chem. Phys. Lett. 2000, 224, 551. [33] M. L. Horng, J. A. Gardecki, A. Papazyan, M. Maroncelli, J. Phys. Chem. 1995, 99, 17 311. [34] G. Schweitzer, G. De Belder, S. Jordens, Y. Karni, F. C. De Schryver, unpublished results. [35] R. M. Stratt, M. Maroncelli, J. Phys. Chem. 1996, 100, 12 981. [36] P. K. McCarthy, G. J. Blanchard, J. Phys. Chem. 1996, 100, 14 592. [37] T. Gustavsson, G. Baldacchino, J. C. Mialocq, S. Reekmans, Chem. Phys. Lett. 1995, 236, 587. [38] W. Jarzeba, G. C. Walker, A. E. Johnson, M. A. Kahlow, P. F. Barbara, J. Phys. Chem. 1998, 92, 7039. [39] Y. Kimura, J. C. Alfano, P. K. Walhout, P. F. Barbara, J. Phys. Chem. 1994, 98, 3450. [40] L. Reynolds, J. A. Gardecki, S. J. V. Frankland, M. L. Horng, M. Maroncelli, J. Phys. Chem. 1996, 100, 10 337. [41] P. Changenet, P. Plaza, M. M. Martin, Y. H. Meyer, J. Phys. Chem. A 1997, 101, 8186. [42] P. Changenet, H. Zhang, M. J. van der Meer, K. J. Hellingwerf, M. Glasbeek, Chem. Phys. Lett. 1998, 282, 276. [43] R. D. Harcourt, K. P. Ghiggino, G. D. Scholes, R. P. Steer, J. Chem. Phys. 1998, 109, 1310. [44] G. Paillotin, C. E. Swenberg, J. Breton, N. E. Geacintov, Biophys. J. 1979, 25, 513. [45] G. Schweitzer, L. Xu, B. Craig, F. C. De Schryver, Opt. Commun. 1997, 142, 283.
منابع مشابه
The effect of welding parameters on the formation of S-shape defects in friction stir welding of aluminum 1085
In this paper, the effects of welding parameters involving tool shape, title angle, rotational speed and welding speed on the S-shape defect formation have been investigated. For this purpose friction stir welding process were done on the Al-1085 plates by cylindrical, Triangle and square pins. The welded sections were studied by metallographic, radiography and SEM methods. The results showed t...
متن کاملThe effect of welding parameters on the formation of S-shape defects in friction stir welding of aluminum 1085
In this paper, the effects of welding parameters involving tool shape, title angle, rotational speed and welding speed on the S-shape defect formation have been investigated. For this purpose friction stir welding process were done on the Al-1085 plates by cylindrical, Triangle and square pins. The welded sections were studied by metallographic, radiography and SEM methods. The results showed t...
متن کاملCrack Behavior of the Aluminum Alloy 2024 Under Fretting Conditions
The initial stage of fretting fatigue crack growth is significantly influenced by tangential force induced by fretting action along the contact surface where a mixed-mode crack growth is involved. Fretting crack behavior of aluminum alloy 2024 was studied, taking into account the problem of contact asperities. Finite element was used for the determination of the stress field near the contact su...
متن کاملEffects of Aluminum, Silicon And Ferro Silicon Anti Oxidants in MgO C Refractories
Three different materials (aluminum, ferro -silicon and silicon) were used as antioxidants in order to prevent the decarburization process and to keep and/or increase the final properties in MgO-C refractories. Their effects were compared by measuring the physical and mechanical properties as well as oxidation and the resultant phases and microstructures, in the temperature range of 200-1600 ...
متن کاملParametric Optimization of Electro Spark Microwelding of Aluminum Clad Steel (RESEARCH NOTE)
The feasibility and parameters optimization of AA5183 aluminum cladding on AISI 1018 steel by electro spark microwelding (ESM) and the corrosion resistance of the clad plate were investigated. The optimum conditions were found as 15 A, 10%, 800 Hz and 2500 rpm for P, D, F and R factors, respectively. Confirmation test under optimum conditions showed that the model can be effectively used to pre...
متن کاملMechanical Characteristics and Failure Mechanism of Nano-Single Crystal Aluminum Based on Molecular Dynamics Simulations: Strain Rate and Temperature Effects
Besides experimental methods, numerical simulations bring benefits and great opportunities to characterize and predict mechanical behaviors of materials especially at nanoscale. In this study, a nano-single crystal aluminum (Al) as a typical face centered cubic (FCC) metal was modeled based on molecular dynamics (MD) method and by applying tensile and compressive strain loadings its mechanical ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemphyschem : a European journal of chemical physics and physical chemistry
دوره 2 1 شماره
صفحات -
تاریخ انتشار 2001